

- ASTM C311 / C311M-17, Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete, ASTM International, West Conshchocken, PA 2017, www.astm.org
- .
- - . .
 - .
- .
 - .
 - :

Factors Effecting Concrete Permeability Transportation of lons through concrete is effected by: • w/c Ratio • Time or Concrete Age • Curing • Exposure Conditions • Weather, Heating Drying • Mixture Design • Cement Type and Quantity • Addition of SCMs • Admixtures

Scope:

 This test method covers the determination of the <u>electrical</u> <u>conductance</u> of concrete to provide a <u>rapid</u> indication of its resistance to the <u>penetration of chloride ions</u>. This test method is applicable to types of concrete where correlations have been established between this test procedure and long-term <u>chloride ponding</u> procedures such as those described in AASHTO T 259.

Developed for US FHWA in 1980s

Techniques to nondestructively measure chloride permeability

Prior: chloride ponding test used AASHTO T259

- Takes 90 days or longer
- Profile grinding, chemical analysis, and chloride profile Good correlation to ponding tests

Electrical current used to accelerate the test

Description of Test

Overview:

- 100 mm diameter cores or cylinders cut to 50 mm length
- Vacuum specimens for 3 hrs and submerge for 18 hrs
- System is then connected in direct current with 3% NaCl and 0.3 N Na OH
- Apply 60-volts potential for 6 hours and measure current every 30 mins.

Factors that Influence Results

Age and curing (drastically affect results)

Older specimens lower coulombs

Presence of admixtures with ionic salts

- Salts act as transport media
- Typ. Accelerators with Calcium Nitrite, Calcium Nitrate, and Calcium Chloride

Others:

cement factor, air content, water/cement ratio, aggregate source/type

Curing Cylinders

Analysis of Results

Moist Curing - 28 days for Only Portland Cement

- Per ASTM C192 for laboratory cast specimens
- Per ASTM C31 for field cast specimens
- Extended Moist Curing 56 Days for SCMs

Allows extra time for SCMs to hydrate
 Accelerated Moist Curing – <u>for SCMs</u>

= 7 days Moist cured followed by 21 days in lime-saturated water at 38.0 \pm 2.0 °C.

Calculation: Total Charge Passed (Conductance)

Plot amperes per time (sec)

Determine the area under the curve to get coulombs

Using trapezoidal rule for determining area

$$Q = 900(I_0 + 2I_{30} + \dots + 2I_{300} + 2I_{330} + 2I_{330})$$

Where:

Q = charge passed (coulombs), I_0 = current (amperes) immediately after voltage is applied, and I_t = current (amperes) at t_{min} after voltage is applied

Coulombs	Permeability Class	Typical of
>4000	High	$w/c^{*} > 0.5$
4000-2000	Moderate	w/c = 0.4 to 0.5
2000-1000	Low	w/c < 0.4
1000-100	Very Low	Latex-modified concrete
<100	Negligible	Polymer concrete
Test is not a	ratio ccurate enough to clea	rly define

Carbonation Mechanism

Penetration of CO₂

- Penetrates slowly in saturated (or near saturated concrete) because pores are blocked by water
- Carbonation won't occur in dry concrete because CO₂ needs to dissolve in water before it reacts. Two Phases: HO 11 00 00 id)

$$CO_2 + H_2O \rightarrow H_2CO_3$$
 (carbonic acid

$$H_2CO_3 + Ca(OH)_2 \rightarrow CaCO_3 + 2H_2O$$

- Optimum humidity is between 45-65%
- . Carbonation corrosion typical found on external elements that are protected from direct precipitation

Corrosion

Corrosion

Most common and costly durability problem in world

Chloride Induced Corrosion

- Prevented with lower w/cm, SCMs, and increased cover
 ASTM test methods available for measuring concrete
- permeability

Carbonation Induced Corrosion

- High-volume SCM concrete prone to deterioration
- Curing and cover are important

Agenda

Concrete Durability

- Introduction
- Corrosion
- <u>Alkali-silica Reaction</u>
 External Sulfate Attack
- Delayed Ettringite Formation

What is Alkali-Silica Reaction (ASR)?

 alkali-silica reaction — the reaction between the <u>alkalies</u> (sodium and potassium) in portland cement and <u>certain siliceous</u> <u>rocks</u> or minerals, such as opaline chert, strained quartz, and acidic volcanic glass, present in some aggregates.

ogy 2013

What is Alkali-silica Reaction (ASR)? Reactive silica in OH OH Reaction between the alkalis (Na+& K⁺) typically from the cement and unstable silica, SiO₂, in some types K aggregat SiO₂ OH· K+ Alkalis in cement paste OH of aggregate Na* Na,K-Si The reaction produces an alkali-silica gel Alkalisilica gel The gel absorbs water from the surrounding paste and expands. The internal expansion eventually leads to cracking of the surrounding concrete.

Guide for Identifying Reactive Aggregates

Approaches for Selecting Preventative Measures

- Prescriptive Approach
- Select Appropriate Risk Levels
- Limit Alkalis
- Supplementary Cementitious Materials
- Performance-based Approach
- ASTM C1567 Mortar Bar Test Method
 ASTM C1293 Concrete Prism Test

External vs. Internal

External Sulfate Attack ("Classical")

- Caused by a <u>source external to concrete</u>, including sulfate from ground water, soil, solid industry waste, fertilizers, atmospheric SO₃ or liquid industry wastes.
- <u>ASTM C1012</u> Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution

Internal Sulfate Attack

- Source of sulfate is internal to concrete, including <u>excessive cement sulfate</u> and <u>delayed ettingite</u> <u>formation</u>.
- ASTM C1038 Standard Test Method for Expansion of Hydraulic Cement Mortar Bars Stored in Water

External or "Classical" Sulfate Attack

Various Sulfate Species

- Magnesium sulfate (Most Aggressive)
- Sodium Sulfate
- Calcium Sulfate (Least Aggressive)

Sulfate Compounds Can Attack:

- Calcium Hydroxide
- C-S-H
- Monosulfate hydrate
- Other hydrates

Sulfate Attack When strictly speaking chemical sulfate attack, it is the chemical breakdown mechanism where sulfate ions (SO₄²⁻) attack the components of the hydrated paste Mechanism of Sulfate Attack $\stackrel{Na^{*}}{SO_{4}^{2-}}Na^{*} \hspace{0.1 cm} \Bigg [\hspace{0.1 cm} Na^{*} \hspace{0.1 cm} SO_{4}^{2-} \hspace{0.1 cm} \Bigg] \hspace{0.1 cm} \Bigg] \hspace{0.1 cm} \bigvee \hspace{0.1 cm}$. Diffusion control ingress $\begin{array}{c} SiO_2 \cdot aq & C\overline{S}H_2 \\ & C_3A(C\overline{S})_3H_{32} \end{array}$ of soluble sulfates (SO42-) Gypsum formation & decalcification of C-S-H · Formation of several $C\overline{S}H_2$ $C_3A(C\overline{S})_3H_{32}$ deleterious expansive by-Gypsum formation & reduced Ca(OH)₂ products Paste micro-cracking $C_3A(C\overline{S})_3H_{32}$ Ettringite formation encouraging further Unreacted Zone $C_1A(C\overline{S})H_1$ penetration and ultimately, reduce service life of the odified from Gollop & Taylor, 1999 structures

Example: Sodium Sulfate

$$\begin{split} CH + N_2 \overline{S}H_{10} &\rightarrow C\overline{S}H_2 + 2NH + 8H \\ \begin{array}{c} \text{Calcium} \\ \text{Hydroxide} + & \text{Sodium} \\ \text{Hydroxide} + & \text{Sulphate} &\rightarrow & \underline{\text{Gypsum}} + & \frac{\text{Sodium}}{\text{Hydroxide}} + & \text{Water} \\ \begin{array}{c} C_3A(C\overline{S})H_{12} + 2C\overline{S}H_2 + 16H \rightarrow & C_3A(C\overline{S})_3H_{32} \\ \hline \\ \text{Calcium} \\ \text{Monosulphoaluminate}^+ & \text{Gypsum} + & \text{Water} &\rightarrow & \underline{\text{Ettringite}} \\ \end{array} \\ \begin{array}{c} 2C_3AH_{12} + 3N_2\overline{S}H_{10} \rightarrow C_3A(C\overline{S})_3H_{32} + 2AH_3 + 6NH + 17H \\ \hline \\ \text{Tri-Calcium} \\ \text{Aluminate} + & \text{Sulphate} &\rightarrow & \underline{\text{Ettringite}} + & \text{Aluminum} + & \underline{\text{Sodium}} \\ \end{array} \\ \begin{array}{c} \text{Hydroxide} + & \text{Sulphate} &\rightarrow & \underline{\text{Hydroxide}} + & \text{Water} \\ \end{array} \end{split}$$

Why Slag Cement Prevents Sulfate Attack?

- Proportional Reduction in C₃A
- Reduction of Soluble Calcium Hydroxide (CH) through the Production of Calcium Silica Hydrates (C-S-H)
- Reducing the Environment for Calcium Sulfoaluminate
 Formation
- Reduction in Permeability

Class C Fly Ash

Explanation of Reduced Sulfate Resistance

- Contributes C₃A and some CH
- Lower consumption of lime due to reduced pozzolanicity (hydraulic reaction)
- Presence of reactive calcium-aluminates in amorphous (glassy) phase
- · Production of reactive aluminate hydrates

Copyright © JENSEN HUGHES. Al rig

When to	Protect	External	Sulfates?
VVIICII (C		LACTIO	ounates:

ACI 201.2R - Guide to Durable Concrete

Severity of potential exposure	Water-soluble sulfate (SO ₄) in soil, % by mass*	Sulfate (SO ₄) [*] in water, ppm	wicer by mass, max. ¹²	Cementitious material requirements
Class 0 exposure	0.00 to 0.10	0 to 150	No special requirements for sulfate resistance	No special requirements for sulfate resistance
Class I exposure	> 0.10 and < 0.20	> 150 and < 1500	0.501	C150 Type II or equivalent ¹
Class 2 exposure	0.20 to < 2.0	1500 to < 10,000	0.451	C150 Type V or equivalent ⁸
Class 3 exposure	2.0 or greater	10,000 or greater	0.401	C150 Type V plus pozzolan or slag ³
Seawater exposure	-	-	See Section 6.4	See Section 6.4

- Measure water-soluble sulfate (SO₄) in soil, % by mass
- Use ASTM C1580 Standard Test Method for Water-Soluble Sulfate in Soil

Agenda Concrete Durability a Introduction b Corrosion a Alkali-silica Reaction b Zternal Sulfate Attack b Delayed Ettringite Formation

Prevention: Maximum Temperature Limit

Specifications Limit $70^{\circ}C = 158^{\circ}F(or 160^{\circ}F)$ Example Specifications:

Specification	Chapter	Requirement
ACI 301	Mass Concrete	158°F
	Precast	153+5°F
ACI 350.5	Mass Concrete	160°F
TxDOT	Mass Concrete	160°F
VDOT		(50-75 Slag Cement) 170°F
	Mass Concrete	(25-40% Class F Fly Ash) 160°F
FDOT	Mass Concrete	SCMs 180°F

evention: ACI 201.2R – Guide to Durable oncrete	
Maximum Temp.	Level of Prevention Required
T ≤ 158°F	No Prevention Required
	1. Type II and V and low-alkali cement with fineness ≤ 430 m ² /kg 2. Use OPC with 1 Day Mortar Strength ≤ 2850 psi
	3. ≥ 25% Class F Fly Ash
158°F ≤ T ≤ 185°F	≥ 35% Class C Fy Ash
	≥ 35% Slag Cement
	≥ 5% Silica Fume + ≥ 25% Slag Cement
	≥ 5% Silica Fume + ≥ 20% Class F Fly Ash
	≥ 10% Metakaolin
T > 185°F	Concrete Should Not Exceed 185°F

Agenda Concrete Durability Introduction Corrosion Alkali-silica Reaction External Sulfate Attack Delayed Ettringite Formation

Summary

- Mass Transport (Pore Solution and Moisture)
 - Affects almost every durability mechanism
- Common "rules of thumb" apply:

 Low w/cm, SCMs, Curing, Quality Construction
 Corrosion
- Alkali-silica Reaction

 - Sufficient Quantities of SCMs
- ASTM C1778 Good Guidance Document
 External Sulfate Attack
 - Type II/V Cements, Slag Cement Preferred,
- Test per ASTM C1012
 Delayed Ettringite Formation

 - Temperatures during curing should be below 70°C

QUESTIONS?

115

117

Copyright © JENSEN HUGHES. All right

For More Information Visit jensenhughes.com

